Operating Point examples ~~~~~~~~~~~~~~~~~~~~~~~~ Introduction """""""""""" This page shows the operating point simulation of some circuits. A simple 1:1 current mirror """"""""""""""""""""""""""" .. image:: ../images/op_example/m1.png A 1:1 current mirror (fig. 1a) is employed to provide a copy of an input current to a load. The two currents being resp. :math:`I_{IN}` and :math:`I_{OUT}`. A good current mirror complies with a mirroring ratio - equal to one here - has a low input resistance - it's a good current sink - and a high output resistance - it's a good current source or equi.v it's a low dependence of :math:`I_{out}` on the output voltage. Please remember, "good" is a qualifier that is only meaningful in relation to the rest of the circuit where the mirror is employed. According to the EKV model, the drain currents of ``M0`` and ``M1`` are composed by two components: the forward current (:math:`i_f`) and the reverse current (:math:`i_r`), see fig. 1b. The former is a function of the pinch-off voltage and the source voltage, referred to the bulk voltage. The latter is a function of the pinch-off voltage and the drain voltage, again referred to the bulk voltage. [Channel-length modulation is neglected] The short between gate and drain of ``M0`` ensures that there can't be channel at the drain side of ``M0``. The reverse current is hence null. For the correct operation of the mirror (ie :math:`I_{OUT}` equal to :math:`I_{IN}`), the channel has to be pinched off on the drain side of ``M1`` as well, because otherwise the output voltage would control the output current. Since ``M0`` and ``M1`` share gate node, source node and bulk node, their forward currents (:math:`i_f`) are equal. In addition each of them has a null reverse current. The total drain current of an MOS transistor is according to the EKV model: .. math:: I_d = I_s (i_f - i_r) Where :math:`I_s` is known as specific current and it is a scaling factor, in particular it is proportional to the W/L ratio of the device. In this example and in the following, all devices are matched (ie equally dimensioned). Therefore: .. math:: I_{OUT} = I_{IN} If ``M1`` had a form factor :math:`k` times bigger than ``M0``, then :math:`I_{s1}` would have been proportionally bigger than :math:`I_{s0}` and: .. math:: I_{OUT} = k \cdot I_{IN} Netlist ^^^^^^^ :: * 1-to-1 current mirror m0 inc inc 0 0 nch w=10u l=3u m1 out inc 0 0 nch w=10u l=3u i1 0 inc type=idc idc=16u v1 out 0 type=vdc vdc=2.5 .model ekv nch TYPE=n VTO=.4 KP=400e-6 .op Simulation results ^^^^^^^^^^^^^^^^^^ :: * 1-TO-1 CURRENT MIRROR Starting op analysis: Calculating guess: done. Solving with Gmin: Building Gmin matrix... Solving... done. Solving without Gmin: Solving... done. Difference check is within margins. (Voltage: er=0.001, ea=1e-06, Current: er=0.001, ea=1e-09) Solution without Gmin: Vinc: 0.661166520045 V Vout: 2.5 V I(V1): -1.64022400455e-05 A OP INFORMATION: M0 N ch MODERATE INVERSION SATURATION beta [A/V^2]: 0.000666997062349 Weff [m]: 1e-05 (1e-05) Leff [m]: 2.9985139559e-06 (3e-06) M/N: 1/1 Vdb [V]: 0.661166520045 Vgb [V]: 0.661166520045 Vsb [V]: 0.0 Vp [V]: 0.117435542925 VTH [V]: 0.4 VOD [V]: 0.182380106934 nq: 1.57402376913 VA [V]: 55.926133036 Ids [A]: 1.59999948649e-05 nv: 1.55302306603 Ispec [A]: 2.80523480148e-06 TEF: 0.340129035153 gmg [S]: 0.000135363138199 gms [S]: -0.000210508167477 rob [Ohm]: 3495384.43658 if: 5.7034387414 ir: 0.00264346735244 Qf [C/m^2]: 0.000110516787925 Qr [C/m^2]: 1.50198071064e-07 ------------------- M1 N ch MODERATE INVERSION SATURATION beta [A/V^2]: 0.000683757860402 Weff [m]: 1e-05 (1e-05) Leff [m]: 2.92501207785e-06 (3e-06) M/N: 1/1 Vdb [V]: 2.5 Vgb [V]: 0.661166520045 Vsb [V]: 0.0 Vp [V]: 0.117435542925 VTH [V]: 0.4 VOD [V]: 0.182380106934 nq: 1.57402376913 VA [V]: 58.7233705568 Ids [A]: 1.64022352838e-05 nv: 1.55302306603 Ispec [A]: 2.80523480148e-06 TEF: 0.33178787657 gmg [S]: 0.000135367502575 gms [S]: -0.000210508167477 rob [Ohm]: 3580205.35254 if: 5.7034387414 ir: 0.0025806785066 Qf [C/m^2]: 0.000110516787925 Qr [C/m^2]: 1.46639633291e-07 ------------------- TOTAL POWER: 5.15842644346e-05 W Notice how the two transistors have the same :math:`i_f` and a low :math:`i_r` (saturation). Channel length modulation (due to different drain voltages) explains for the discrepancy in :math:`I_{DS}` A different view of the 1:1 current mirror """""""""""""""""""""""""""""""""""""""""" Consider now the two transistors in fig. 2a. .. image:: ../images/op_example/m2.png The circuit is similar to the one in fig. 1a: the two transistors again share gate, source and bulk nodes (potential) and have a separate drain node, but this time the KCL at the source node is different: the node is not set to a fixed potential. Nonetheless, a similar discussion can be drawn: considering fig. 2b, the forward and reverse current components have been put in evidence. Notice how source and drain of ``M0`` appear to have been switched around: MOS transistors are geometrically symmetrical, the choice of drain and source labeling has no influence on the results. On the other hand, the choice made in fig. 2b allows us to state that again ``M0`` and ``M1`` have the same forward current. Notice how the two devices can't be both in saturation: on the side on which they share the source node, if one transistor has a channel, the other needs to have one has well. In addition, at least one of the reverse currents has to be non-zero, since the total current entering the drain of ``M1`` (:math:`I_{TOT}`) has to flow out of ``M0`` as well, or a net non-zero charge would be created at every instant. Therefore both transistors can't be in saturation. The results are: * ``M0``: :math:`i_f`, :math:`i_r = I_{TOT} + i_f` * ``M1``: :math:`i_f`, :math:`i_r = I_{TOT} - i_f` The rest of the circuit - not shown - would set the actual value of :math:`i_f` and :math:`I_{TOT}`. A 1:1/16th current mirror """"""""""""""""""""""""" A down-scaling current mirror is depicted in fig. 3a. .. image:: ../images/op_example/m3.png Here again, the transistors share the same bulk and gate node, and, two-by-two, they also share drain/source node. While this circuit is more complex than the previous ones, it can be analyzed in the same fashion, taking into account the results already presented: - each neighboring transistor pair acts like a current mirror, ie same :math:`i_f`/:math:`i_r`, - zero net charge can be created or destroyed at each instant. Considering the currents, we have 17 forward currents and 17 reverse currents to be determined, for a total of 34 unknowns: We can write: * 15 equations of the type :math:`i_f = i_r` for neighboring devices, * 1 equation for the mirror operation of the ``M0``, ``M1`` pair, * 1 equation setting :math:`i_r = 0` for ``M0`` (drain-gate short), * 1 equation setting :math:`I_s \cdot i_f = I_{IN}` for ``M0`` (KCL), * 1 equation setting :math:`i_r = 0` for ``M16`` (hp. in saturation), * 15 equations to require that ``M1``, ``M2``, ``M3``... ``M16`` have all the same drain current. That gives a total of 34 equations. It can be shown that the solution is: - ``M0``: :math:`i_f = I_{IN}/I_s`, :math:`i_r = 0` - ``M1``: :math:`i_f = I_{IN}/I_s`, :math:`i_r = 15/16 \cdot I_{IN}/I_s` - ``M2``: :math:`i_f = 15/16 I_{IN}/I_s`, :math:`i_r = 14/16 \cdot I_{IN}/I_s` - and so on... The general form is: ``M[n]``, for :math:`n = 1 \dots 16`, :math:`i_f = (17 - n)/16 \cdot I_{IN}/I_s` and :math:`i_r = (16-n)/16 \cdot I_{IN}/I_s`. ``M16`` has :math:`i_f = 1/16 \cdot I_{IN}/I_s` and :math:`i_r = 0`. Its drain current - the mirror output current - is therefore: .. math:: I_{OUT} = 1/16 \cdot I_{IN}. Netlist ^^^^^^^ :: * 1-to-1/16th down-scaling current mirror m0 inc inc 0 0 nch w=1u l=1u m16 out inc n1 0 nch w=1u l=1u m15 n1 inc n2 0 nch w=1u l=1u m14 n2 inc n3 0 nch w=1u l=1u m13 n3 inc n4 0 nch w=1u l=1u m12 n4 inc n5 0 nch w=1u l=1u m11 n5 inc n6 0 nch w=1u l=1u m10 n6 inc n7 0 nch w=1u l=1u m9 n7 inc n8 0 nch w=1u l=1u m8 n8 inc n9 0 nch w=1u l=1u m7 n9 inc n10 0 nch w=1u l=1u m6 n10 inc n11 0 nch w=1u l=1u m5 n11 inc n12 0 nch w=1u l=1u m4 n12 inc n13 0 nch w=1u l=1u m3 n13 inc n14 0 nch w=1u l=1u m2 n14 inc n15 0 nch w=1u l=1u m1 n15 inc 0 0 nch w=1u l=1u i1 0 inc type=idc idc=16e-6 v1 out 0 type=vdc vdc=5 .model ekv nch TYPE=n VTO=.4 KP=400e-6 .op Simulation results ^^^^^^^^^^^^^^^^^^ :: * 1-TO-1/16TH DOWN-SCALING CURRENT MIRROR Starting op analysis: Calculating guess: done. Solving with Gmin: Building Gmin matrix... Solving... done. Solving without Gmin: Solving... done. Difference check is within margins. (Voltage: er=0.001, ea=1e-06, Current: er=0.001, ea=1e-09) Solution without Gmin: Vinc: 0.904813615968 V Vout: 5.0 V Vn1: 0.222041524366 V Vn2: 0.183949114562 V Vn3: 0.158276458021 V Vn4: 0.137871535291 V Vn5: 0.120520118975 V Vn6: 0.105208756242 V Vn7: 0.0913779977097 V Vn8: 0.0786820153752 V Vn9: 0.066890054189 V Vn10: 0.0558393890315 V Vn11: 0.0454103544576 V Vn12: 0.0355120049651 V Vn13: 0.0260733625457 V Vn14: 0.0170378079838 V Vn15: 0.0083593406432 V I(V1): -1.0327588469e-06 A OP INFORMATION: M0 N ch STRONG INVERSION SATURATION beta [A/V^2]: 0.000193555471162 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.03329551368e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.904813615968 Vgb [V]: 0.904813615968 Vsb [V]: 0.0 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.369325572375 nq: 1.55151340493 VA [V]: 2.3850844813 Ids [A]: 1.59999863615e-05 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 0.20843499948 gmg [S]: 8.073972779e-05 gms [S]: -0.000129001766756 rob [Ohm]: 149067.907148 if: 20.1828675005 ir: 0.25276934725 Qf [C/m^2]: 0.000225753091822 Qr [C/m^2]: 1.17396160816e-05 ------------------- M16 N ch MODERATE INVERSION SATURATION beta [A/V^2]: 0.000236055431981 Weff [m]: 1e-06 (1e-06) Leff [m]: 8.47258621932e-07 (1e-06) M/N: 1/1 Vdb [V]: 5.0 Vgb [V]: 0.904813615968 Vsb [V]: 0.222041524366 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.0330076658728 nq: 1.55151340493 VA [V]: 45.7896511174 Ids [A]: 1.03275797244e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 0.516148397578 gmg [S]: 1.3598388406e-05 gms [S]: -2.06195194629e-05 rob [Ohm]: 44337252.6182 if: 1.05552698204 ir: 0.000703390112833 Qf [C/m^2]: 3.608415906e-05 Qr [C/m^2]: 3.9470194852e-08 ------------------- M15 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000196221608214 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.01925573753e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.222041524366 Vgb [V]: 0.904813615968 Vsb [V]: 0.183949114562 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.0907047995749 nq: 1.55151340493 VA [V]: 0.0497875842199 Ids [A]: 1.03275775078e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 0.889383922345 gmg [S]: 9.76227671625e-06 gms [S]: -3.5529830659e-05 rob [Ohm]: 48208.3859281 if: 2.33331263359 ir: 1.0643556238 Qf [C/m^2]: 6.21772036532e-05 Qr [C/m^2]: 3.63007382702e-05 ------------------- M14 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000197175919967 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.0143226416e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.183949114562 Vgb [V]: 0.904813615968 Vsb [V]: 0.158276458021 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.129590202326 nq: 1.55151340493 VA [V]: 0.0289727041979 Ids [A]: 1.03275801302e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 1.17601518018 gmg [S]: 7.48320262966e-06 gms [S]: -4.69804206758e-05 rob [Ohm]: 28053.7200705 if: 3.60776881968 ir: 2.34495311438 Qf [C/m^2]: 8.22157361826e-05 Qr [C/m^2]: 6.23803187459e-05 ------------------- M13 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000197622982017 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.01202804431e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.158276458021 Vgb [V]: 0.904813615968 Vsb [V]: 0.137871535291 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.160496767728 nq: 1.55151340493 VA [V]: 0.0219308104837 Ids [A]: 1.03275814052e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 1.41788921504 gmg [S]: 6.30593158677e-06 gms [S]: -5.66430103458e-05 rob [Ohm]: 21235.1852997 if: 4.8813573262 ir: 3.62139820283 Qf [C/m^2]: 9.91252681051e-05 Qr [C/m^2]: 8.24103946022e-05 ------------------- M12 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000197890926494 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.0106577575e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.137871535291 Vgb [V]: 0.904813615968 Vsb [V]: 0.120520118975 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.18677830235 nq: 1.55151340493 VA [V]: 0.0181981374178 Ids [A]: 1.03275822015e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 1.63116706912 gmg [S]: 5.5540108543e-06 gms [S]: -6.51632153734e-05 rob [Ohm]: 17620.9078396 if: 6.15483579078 ir: 4.89658255608 Qf [C/m^2]: 0.000114035626904 Qr [C/m^2]: 9.93138387607e-05 ------------------- M11 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000198073131348 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00972806679e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.120520118975 Vgb [V]: 0.904813615968 Vsb [V]: 0.105208756242 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.2099698449 nq: 1.55151340493 VA [V]: 0.0158233129666 Ids [A]: 1.03275827611e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 1.82412667895 gmg [S]: 5.01998756573e-06 gms [S]: -7.28717299041e-05 rob [Ohm]: 15321.4099879 if: 7.42849392389 ir: 6.17139807159 Qf [C/m^2]: 0.000127525527332 Qr [C/m^2]: 0.000114219252757 ------------------- M10 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000198206852699 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00904684816e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.105208756242 Vgb [V]: 0.904813615968 Vsb [V]: 0.0913779977097 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.230918772215 nq: 1.55151340493 VA [V]: 0.0141523755851 Ids [A]: 1.03275831829e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.00168302606 gmg [S]: 4.61535219563e-06 gms [S]: -7.99649018188e-05 rob [Ohm]: 13703.4728595 if: 8.70245034288 ir: 7.44620254594 Qf [C/m^2]: 0.000139938578183 Qr [C/m^2]: 0.000127704853941 ------------------- M9 N ch MODERATE INVERSION LINEAR beta [A/V^2]: 0.000198310138598 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00852130614e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0913779977097 Vgb [V]: 0.904813615968 Vsb [V]: 0.0786820153752 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.250148896904 nq: 1.55151340493 VA [V]: 0.0128989737018 Ids [A]: 1.03275835162e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.16703802962 gmg [S]: 4.29500867285e-06 gms [S]: -8.65706441092e-05 rob [Ohm]: 12489.8275396 if: 9.97675042417 ir: 8.72115687844 Qf [C/m^2]: 0.000151498627191 Qr [C/m^2]: 0.00014011402435 ------------------- M8 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198392895287 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00810061626e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0786820153752 Vgb [V]: 0.904813615968 Vsb [V]: 0.066890054189 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.268009734921 nq: 1.55151340493 VA [V]: 0.0119161419552 Ids [A]: 1.03275837884e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.32241587635 gmg [S]: 4.03321312301e-06 gms [S]: -9.27778104751e-05 rob [Ohm]: 11538.1702045 if: 11.2514053587 ir: 9.99633553235 Qf [C/m^2]: 0.000162361168332 Qr [C/m^2]: 0.000151670496187 ------------------- M7 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.00019846105755 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00775437997e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.066890054189 Vgb [V]: 0.904813615968 Vsb [V]: 0.0558393890315 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.284747759855 nq: 1.55151340493 VA [V]: 0.0111199812787 Ids [A]: 1.03275840164e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.46943627226 gmg [S]: 3.81404706427e-06 gms [S]: -9.8651106306e-05 rob [Ohm]: 10767.2629543 if: 12.5264097287 ir: 11.2717709335 Qf [C/m^2]: 0.000172639436036 Qr [C/m^2]: 0.000162529698349 ------------------- M6 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198518419499 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00746318908e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0558393890315 Vgb [V]: 0.904813615968 Vsb [V]: 0.0454103544576 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.300544224434 nq: 1.55151340493 VA [V]: 0.0104587776192 Ids [A]: 1.0327584211e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.6093222773 gmg [S]: 3.62706421814e-06 gms [S]: -0.000104239391439 rob [Ohm]: 10127.0320391 if: 13.8017500679 ir: 12.5474737773 Qf [C/m^2]: 0.000182418935017 Qr [C/m^2]: 0.000172804825071 ------------------- M5 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198567531583 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.0072140113e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0454103544576 Vgb [V]: 0.904813615968 Vsb [V]: 0.0355120049651 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.315536880374 nq: 1.55151340493 VA [V]: 0.00989875048115 Ids [A]: 1.03275843798e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.74302437776 gmg [S]: 3.4650857034e-06 gms [S]: -0.000109580636704 rob [Ohm]: 9584.76843865 if: 15.0774092523 ir: 13.8234431638 Qf [C/m^2]: 0.000191766114233 Qr [C/m^2]: 0.000182581354073 ------------------- M4 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198610178219 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00699773694e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0355120049651 Vgb [V]: 0.904813615968 Vsb [V]: 0.0260733625457 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.329833235381 nq: 1.55151340493 VA [V]: 0.00941680636307 Ids [A]: 1.03275845282e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.8712987005 gmg [S]: 3.32299269557e-06 gms [S]: -0.0001147050485 rob [Ohm]: 9118.11114922 if: 16.353368823 ir: 15.0996719747 Qf [C/m^2]: 0.000200733834875 Qr [C/m^2]: 0.000191925714807 ------------------- M3 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198647649302 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00680778606e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0260733625457 Vgb [V]: 0.904813615968 Vsb [V]: 0.0170378079838 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.343519048442 nq: 1.55151340493 VA [V]: 0.00899656795571 Ids [A]: 1.03275846598e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 2.99475852913 gmg [S]: 3.19702338781e-06 gms [S]: -0.000119637126799 rob [Ohm]: 8711.20233049 if: 17.6296102286 ir: 16.3761498503 Qf [C/m^2]: 0.000209364971898 Qr [C/m^2]: 0.000200890753493 ------------------- M2 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198680902931 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00663927458e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0170378079838 Vgb [V]: 0.904813615968 Vsb [V]: 0.0083593406432 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.356663994983 nq: 1.55151340493 VA [V]: 0.00862606476442 Ids [A]: 1.03275847775e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 3.1139094834 gmg [S]: 3.08434271957e-06 gms [S]: -0.000124397070523 rob [Ohm]: 8352.45117837 if: 18.9061154837 ir: 17.6528648853 Qf [C/m^2]: 0.000217694873415 Qr [C/m^2]: 0.000209519333023 ------------------- M1 N ch STRONG INVERSION LINEAR beta [A/V^2]: 0.000198710667278 Weff [m]: 1e-06 (1e-06) Leff [m]: 1.00648849274e-06 (1e-06) M/N: 1/1 Vdb [V]: 0.0083593406432 Vgb [V]: 0.904813615968 Vsb [V]: 0.0 Vp [V]: 0.24383362138 VTH [V]: 0.4 VOD [V]: 0.369325572375 nq: 1.55151340493 VA [V]: 0.00829632303901 Ids [A]: 1.03275848844e-06 nv: 1.51466221222 Ispec [A]: 8.29535007765e-07 TEF: 3.22917428061 gmg [S]: 2.98276797184e-06 gms [S]: -0.000129001766756 rob [Ohm]: 8033.168579 if: 20.1828675005 ir: 18.9298046103 Qf [C/m^2]: 0.000225753091822 Qr [C/m^2]: 0.000217846791436 ------------------- TOTAL POWER: 1.964081209e-05 W The :math:`I_{OUT}/I_{IN}` scaling factor is as expected, since :math:`I_{OUT} = 1uA` when :math:`I_{IN} = 16uA`. Furthermore, the results regarding the subdivision of the drain current in :math:`i_f/i_r` and the mirroring of currents in neighboring devices agree with the expectations as well. Lastly, notice how only ``M0`` and ``M16`` operate in saturation, all other transistors are in linear region.